EECS 562 Homework #8

- 1. 7.11
- 2. 7.13
- 3. 7.14 but use a carrier frequency of 5 MHz.
- 4. Explain the operation of the QPSK coherent detector in Figure 7.7 page 276.
- 5. Using
 - http://demonstrations.wolfram.com/DigitalModulationQuadraturePhaseShiftKeyingQPSKSignal Constel/ Explain the impact in terms of the eye diagram, transmission bandwidth, and signal quality of the following parameter changes:
 - a. Changing the raised cosine roll-off factor from .1 to 0.9.
 - b. Changing the I/Q phase error from 0 to 25° .
 - c. Explain what happened when you click on the trajectory.
- 6. A BPSK system needs to transmit 256kbit/sec and provide a 10^{-5} BER. Let N₀=-107 dB_w/Hz. The path loss is 67dB.
 - a. Find the required RF transmission bandwidth, B_{RF} ; assume Raised-Cosine pulse shape with a roll off factor α of 1 and Nyquist Bandwidth of $\frac{1}{2}$.
 - b. Find the required transmitter power.

7. The signal constellation for 16-QAM is given below:

In this case 16-QAM is used. The following sequence of bits arrive at a rate of 40 kb/s.

11100000111100111010

- a) What is the symbol time, T_{s} , and symbol rate.
- b) If raised cosine pulses are used with $B_0=.5$ and $\alpha=1$ what is the required transmission bandwidth?
- c) What is the spectral efficiency in this case?
- d) What are the first five complex baseband symbols?
- e) What is the transmitted RF signal for $0 < t < T_s$
- f) The received 16-QAM signal is processed by the system shown below. What is the integration time of the Integrate and Dump.
- g) The received 16-QAM signal is processed by the system shown below. For X_i =-2.9 and X_q = -0.9 what bits were transmitted.

- 8. Explore the system trade-off between spectral efficiency and required RF transmission bandwidth for M-QAM. In this case let N_0 =-107 dB_w/Hz and assume a required bit rate of 256kbit/sec and Raised-Cosine pulse shape with a roll off factor α of 1 and Nyquist Bandwidth of ¹/₂.
 - a. To provide a $10^{\text{-}2}$ BER find the required E_b and RF transmission bandwidth, B_{RF} for QPSK, and 64-QAM
 - b. To provide a $10^{\text{-3}}$ BER find the required E_b and RF transmission bandwidth, $B_{\text{RF},}\,$ for QPSK and 64-QAM
 - c. To provide a $10^{\text{-}4}$ BER find the required E_b and RF transmission bandwidth, B_{RF} for QPSK and 64-QAM
 - d. That is, fill out the table below and comment on the BER, required E_b and required RF transmission bandwidth trade-offs; specifically discuss the trade-off with respect the spectral efficiency defined as the $\eta = r_b/B_{RF}$ (bits/Hz).

Modulation	BER	E _b	B _{RF}	η (bits/Hz)
QPSK	10-2			
QPSK	10-3			
QPSK	10-4			
64-QAM	10-2			
64-QAM	10-3			
64-QAM	10-4			

Use the theoretical BER performance for M-QAM assuming Gray coding given below and at <u>http://www.ittc.ku.edu/~frost/EECS_562/QAM_Theoretical_BER.jpeg</u> (4-QAM=QPSK)

